Spatial and spatiotemporal variation in metapopulation structure affects population dynamics in a passively dispersing arthropod

Authors: De Roissart, A.¹ Wang, S.² & Bonte, D.¹

Affiliations:
¹ Ghent University, Dep. Biology, Terrestrial Ecology Unit, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
² Centre for Biodiversity Theory and Modelling, Station d’Ecologie Expérimentale du CNRS, 09200 Moulis, France

Corresponding author: Dries Bonte, Ghent University, Dep. Biology, Terrestrial Ecology Unit, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium. Email: dries.bonte@ugent.be
tel: 0032 9 264 52 13; fax: 0032 9 264 87 94

E-mail address of the co-authors: Annelies.Deroissart@ugent.be; Shaopeng.wang@ecoex-moulis.cnrs.fr; Dries.Bonte@ugent.be

Manuscript type: standard paper

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/1365-2656.12400
This article is protected by copyright. All rights reserved.
Running title: contrasting metapopulation dynamics

Key-words: metapopulation structure, stochasticity, population dynamics, dispersal, *Tetranychus urticae*, synchrony, variability

Abstract

1. The spatial and temporal variation in the availability of suitable habitat within metapopulations determines colonization-extinction events, regulates local population sizes and eventually affects local population and metapopulation stability. Insights into the impact of such a spatiotemporal variation on the local population and metapopulation dynamics are principally derived from classical metapopulation theory and have not been experimentally validated.

2. By manipulating spatial structure in artificial metapopulations of the spider mite *Tetranychus urticae*, we test to which degree spatial (island-mainland metapopulations) and spatiotemporal variation (classical metapopulations) in habitat availability affect the dynamics of the metapopulations relative to systems where habitat is constantly available in time and space (patchy metapopulations).

3. Our experiment demonstrates that (i) spatial variation in habitat availability decreases variance in metapopulation size, decreases density dependent dispersal at the metapopulation level, while (ii) spatiotemporal variation in habitat availability increases patch extinction rates, decreases local population and metapopulation sizes, and decreases density dependence in population growth rates. We found dispersal to be negatively density dependent and overall low in the spatial variable mainland-island metapopulation.

4. This demographic variation subsequently impacts local and regional population dynamics and determines patterns of metapopulation stability. Both local and metapopulation-level variability is minimised in mainland-island metapopulations relative to classical and patchy ones.

Introduction

The development of the metapopulation concept by Levins (1969) resulted in an increasing awareness of the importance of spatial habitat configuration for colonization-extinction dynamics in fragmented landscapes. This subsequently triggered research on dispersal because of its central role...
in metapopulation dynamics (Hanski 2004) and simultaneously opened a new perspective in conservation biology through the consideration of landscape structure as a major driving force for the persistence of populations (e.g., Fahrig 2007). While the field has moved from a patch occupancy perspective to approaches that integrate population dynamics (Benton et al. 2001, 2004, Strevens & Bonsall 2011), most of our insights herein are derived from theory (e.g., Fronhofer et al. 2012). Establishing a thorough understanding of the impact of spatial and spatiotemporal variation in habitat availability in an empirical study-system is therefore a central challenge in ecology and conservation biology (Benton et al. 2002).

Populations in spatially structured habitats are expected to be regulated by external factors such as spatiotemporal variation in habitat and/or resource availability (Benton et al. 2001, Altwegg et al. 2014) but also by internal density dependent feedbacks (Turchin 1999, Benton et al. 2001). Density-dependent processes at the local level may impact population dynamics at the metapopulation-level by rescuing local populations at the brink of extinction or impacting the synchrony of the population fluctuation (Capucino 1995). In a constant environment, the population regulation by density dependent population growth can lead to a stable equilibrium in population size. However, because many populations are subject to continuous disturbance, this equilibrium is unlikely to be reached in natural populations (Friedenberg 2003, Cameron & Benton 2004).

Local densities are additionally regulated by emigration and immigration (Strevens & Bonsall 2011). Dispersal is typically positively density dependent when local exploitative and interference competition is strong (Bowler & Benton 2005). A negative density dependency in dispersal may, however, also evolve when densities are directly related to local habitat quality rather than to the level of competition, especially when dispersal costs are low (Rodrigues & Johnstone 2014). Because habitat fragmentation leads to substantial dispersal costs, dispersal will be especially a density-dependent process during emigration (Dytham & Travis 2006; Poethke & Hovestadt 2002). This local density dependence will be detectable at the metapopulation-level when organisms are able to move freely within the metapopulations, so when dispersal is global. When the population dynamics are strongly impacted by external forces, for instance by synchronised depletion of resources, local density dependency will not necessarily lead to density dependence at the metapopulation level (Bowler & Benton, 2005).

Density dependence of population growth and emigration principally affect local population dynamics. Dispersal also affect metapopulation stability through spatial coupling. The strength and
direction of the stabilising impact depends directly on the strength and direction of the density dependent effects and the topology of the metapopulation (Tromeur et al. 2013). Not too low dispersal rates stabilise the size of local populations (Abbott 2011) but meanwhile enhance spatial synchrony among local populations (Liebhold et al. 2004), thereby potentially destabilising metapopulations persistence (Hanski 1998). Alternatively, recolonisation dynamics are an important prerequisite for the existence of metapopulation dynamics. Low dispersal rates will decrease the typical rescue events of local extinct patches (e.g., Heino et al. 1997; Hanski 1998; Holland & Hastings 2008) and thus decrease the viability of the metapopulation as a whole. Interestingly, dispersal is subject to fast evolutionary changes to changes in patch size asymmetry and patch extinction (Bowler & Benton 2005). Fast evolutionary dynamics could thus (re)enforce these metapopulation-level stabilising mechanisms (Heino & Hanski 2001).

Not all spatially structured populations in nature are expected to be typical Levins’ metapopulations, i.e., metapopulations consisting of equally sized patches, moderate levels of dispersal and some degree of stochastic extinctions (Baguette 2004, Fronhofer et al. 2012). Although we lack any empirical support, spatially structured populations in nature likely comply more to patchy or mainland-island metapopulations (Harrison & Taylor 1997). Mainland-island systems are characterized by high variation in patch size and occupancy as well as asymmetrical connectivity; patchy metapopulations are characterised by high levels of connectivity that prevent patch extinction (Fronhofer et al. 2012).

Substantial progress in understanding the relationship between the spatiotemporal metapopulation structure and population dynamics is hampered by the intrinsic difficulties to decouple patterns from processes in natural systems. We opted to follow an experimental approach using microcosms to study population dynamics in three types of metapopulation that approach real systems as close as possible (Benton et al. 2007). The objective of this research was to understand to which degree spatial and spatiotemporal variation in habitat availability affects the demographic dynamics in experimental metapopulations of a spider mite. We specifically tested the hypotheses (Table 1) that, relative to patchy metapopulations, (i) spatial variation in habitat availability (as in mainland-island metapopulations) would increase local population size, thereby decrease the extinction rate and temporal variability of local populations and be on average at higher densities, (ii) that spatiotemporal variable metapopulations (classical metapopulations) would be characterised by higher patch extinction rates and subsequent variation in local population size, thereby decreasing the overall metapopulation size and average population density. Our experiments were designed to
induce aerial dispersal among local patches within the artificial metapopulations. Given the overall scarce availability of habitat within the metapopulations, we expect immigration costs to be high. Metapopulation stability is therefore anticipated to be primarily driven by external factors thereby destabilising the spatiotemporal variable metapopulations relative to the others due to a high level of local variability and a low level of spatial synchrony. Asymmetry in patch size, and thus decreased immigration probabilities for the majority of the individuals inhabiting large patches (Poethke et al. 2011), is additionally expected to select for lower levels of dispersal in mainland-island metapopulations, while no differences in the density dependent population growth are a priori expected.

Material & methods
Experimental system of artificial metapopulations
Three types of artificial metapopulations were constructed with a varying spatial configuration of the patches but with an equal metapopulation carrying capacity. The “LS-VL” spider mite strain was used as a base population because earlier research demonstrated its high genetic variability (Bitume et al. 2013; Bonte et al. 2010; Van Leeuwen et al. 2008). *Tetranychus urticae* reaches adulthood from the egg stage in on average eight days. Freshly matured females constitute the dispersing phenotype in this species (Smitley & Kennedy 1985, Li & Margolis 1993, Fronhofer et al. 2014, Bonte et al. 2014, Van Petegem et al. 2015). Under standardised conditions where resources are not limiting, dispersal rates increase in relation to the density of young inseminated females (Bitume et al. 2013, De Roissart et al. 2013). Bean (*Phaseolus vulgaris L.*) leaves of standardized size were used to create patches and placed in closed boxes (71 x 44 x 31 cm). Patches were isolated from each other by a Tanglefoot matrix preventing mites from dispersing by walking. Metapopulation resources were renewed weekly by adding fresh bean leafs according to the treatment. No leaves were removed before complete deterioration preventing the enforcement of extinction. A wind current (2 m/s) facilitated aerial dispersal of the mites two times a week. The wind currents were tested in a preliminary experiment and ensured mite dispersal in all possible directions (see supplementary material S1). Artificial metapopulations with the following spatial configurations (each three times replicated) were installed (Fig. 1):

i. a homogeneous configuration: metapopulations consisting of nine equally sized bean leaf patches of 20 cm²; patches were weekly refreshed (further referred to as HOM), thereby mimicking patchy metapopulations.
ii. a spatial heterogeneous configuration: metapopulations consisting of three patches of standard leaf size (20 cm²) and three double sized patches, so corresponding to mainland-island metapopulations (further referred to as SPA). The position of the patches in the metapopulation was randomised among the three replicates but remained constant in time.

iii. a spatiotemporal heterogeneous configuration: metapopulations consisting of nine patches with temporally changing leaf sizes (further referred to as TEM). Here, standard leaves of 20 cm² were every week randomly added to one of the nine patches. This resulted in a weekly changing availability of resources over the nine patches. This treatment corresponds to classical metapopulations.

All metapopulations were thus weekly foreseen with 180 cm² leaf resources, but these were differently allocated among patches. The HOM metapopulations always consisted of nine patches with resources, the SPA metapopulation consisted of six patches, while for the TEM metapopulations, the total number of refreshed patches was variable, though always between six and nine patches. At the beginning of the experiment, 20 randomly collected female mites from the base population were assigned to each bean leaf patch and allowed to establish populations. All metapopulations were maintained under controlled conditions (23°C, 16:8 LD photoperiod). The experiment lasted 182 days but demographic data were only collected when metapopulations were fully established (after approximately 5 generations, 40 days).

Local demography

Average local population densities (individuals/cm²) of all the different life stages (eggs, juveniles, adult males and females) and local population extinctions were weekly quantified by counting the number of mites of all life stages (eggs, juveniles and adults) on three randomly chosen areas of 1 cm² of each bean leaf (thus, from each patch). Density-dependence of local populations was assessed as the slope of the relationship between population growth rate (\(\ln(N_{t+1}/N_t)\)) and log population size (\(\ln(N_t)\)). Population densities and extinctions were analysed using generalized linear mixed models (GLMM-GLIMMIX procedure SAS 9.3) (SAS Institute Inc 2006) with ‘treatment’ (HOM, SPA, TEM) as independent factor and each individual metapopulation as a random effect to control for dependence among replicates from each metapopulation treatment. Depending on the dependent variable, a Poisson (population density/size) or binomial error (extinction) structure was modelled with appropriate link functions. We corrected for potential overdispersion by modelling residual variation as an additional random factor. Non-significant contributions (P>0.05) were
Accepted Article

omitted by backwards procedure and validated by model selection. Effective degrees of freedom were estimated using Kenward-Rogers procedure (Kenward & Rogers 1997).

Dispersal and metapopulation dynamics

Dispersal

Dispersal at the metapopulation level was estimated weekly by counting the number of mites on 12 rectangles (2cm x 3cm) of tanglefoot randomly placed in the metapopulation boxes. Adult females were, as foreseen, the only life stage present on the tanglefoot squares. Dispersal propensity was measured as the number of female adult mites on the total area of rectangles (12 x 6 cm2) relative to the current estimate of the number of females on a comparable surface of leaf in the metapopulation. It was statistically analysed by means of generalized linear mixed models (GLMM) for binomially distributed data with logit-link and correction for potential overdispersion. Independent factors were “average female mite density” or “total population density” and the “treatment”. In order to control for possible correlation due to the common date of testing, we included “date” as a random effect. Effective degrees of freedom were estimated using K-R procedure (Kenward & Rogers 1997). Post hoc Tukey tests were performed to correct pair wise differences among treatments. All analyses were performed with SAS 9.3 (Proc Glimmix; SAS Institute, 2001).

Cross-correlation analyses of time series of dispersal propensity and total metapopulation density were performed to determine the presence of serial dependence between the different time series. Our aim was to locate density-dependence and the lag between density and dispersal. Additionally we assessed whether lags and cross-correlation coefficients differed among treatments. Cross-correlation analyses of the time series of dispersal and metapopulation density were performed using the nlme package in R 3.1-97. The autocorrelation function (ACF) was used to demonstrate the presence of periodicity in the time series. Cross-correlation coefficients of the time-series were obtained by the cross-correlation function in R (CCF) and analysed using linear mixed models (MIXED procedure in SAS 9.3). ‘Metapopulation replicate’ was included as a random effect.

Metapopulation size/density

To estimate metapopulation size, we summed estimated local population sizes (see higher) for each replicated metapopulation for each time step they were recorded. Since the total amount of resources (total habitat availability) was equal in all metapopulations, metapopulation size is directly related to metapopulation density. Metapopulation sizes/densities were analysed using generalized
linear mixed models (GLMM-GLIMMIX procedure SAS 9.3) (SAS Institute Inc 2006) with ‘treatment’ (HOM, SPA, TEM) as independent factor and each individual metapopulation as a random effect to control for dependence among replicates from each metapopulation treatment. A Poisson error structure was modelled with appropriate link functions. We corrected for potential overdispersion by modelling residual variation as an additional random factor (Verbeke & Molenberghs 2000). Non-significant contributions (P>0.05) were omitted by backwards procedure and validated by model selection. Effective degrees of freedom were again estimated using Kenward-Rogers procedure. Density-dependence at the metapopulation level was estimated as the slope of the relation between population growth rate (ln(N_{t+1}/N_t)) and log population size (ln(N_t)). With the time series of metapopulation juvenile and adult density, a cross-correlation analysis was performed to determine the presence of serial dependence between the different time series. Our aim was to assess whether the ups and downs of the different time series are correlated and to locate possible lags between time series. Cross-correlation analyses of the time series of adult density and juvenile density were performed using the nlme package in R 3.1-97. Cross-correlation coefficients of the time-series were analysed using general linear models (MIXED procedure in SAS 9.3) with ‘metapopulation replicate’ included as a random effect. Post-hoc Tukey tests were performed to correct for pair wise differences among treatments.

(Meta)population variability and spatial synchrony

Temporal variability at both local population (α-variability) and metapopulation scales (γ-variability) were calculated following Wang & Loreau (2014). α-variability is calculated as the square of the weighted average of the coefficient of variation (CV) across local populations; γ-variability as the square of the CV of the metapopulations. Variability parameters were first separately analysed using general linear models (GLM procedure in SAS 9.3). Post-hoc Tukey tests were performed to correct pair wise differences among treatments. Spatial synchrony is defined as a metapopulation-wide measure of population synchrony and equals the ratio of metapopulation γ-variability to local α-variability (see Wang & Loreau 2014 for details).

Results

Local demography

Average local population size (adults, juveniles and eggs) differed among treatments ($F_{2,6.054}=36.20; P=0.0004$). Population sizes were on average larger in the spatially heterogeneous metapopulations (22.11 ± 2.32SE individuals) than in the homogeneous (15.43 ± 1.62SE individuals) ($t_{5.94}=-6.96$;
P=0.0010) and spatiotemporal heterogeneous (14.80 ± 1.55SE individuals) (t_{6,122}=7.71; P=0.0006) metapopulations. Larger population size in spatially heterogeneous metapopulations were equally observed for the different life stages (adults, juveniles and eggs) separately (see supplementary tables S2.1 and S2.2). Average local population densities differed among treatments (F_{2,6.083}=25.26 P=0.0011) and were lower in spatiotemporally variable metapopulations (10.50 ± 1.17SE individuals) compared to homogeneous (15.20 ± 1.69SE individuals) and spatially heterogeneous metapopulations (14.41 ± 1.60SE individuals) (Fig. 2). The proportion of local populations going extinct was significantly affected by treatment (F_{2,5.166}=10.77; P=0.0144). The average proportion of extinctions was higher in spatiotemporal variable metapopulations (0.251 ± 0.091SE) than in homogeneous (0.01 ± 0.006SE) and spatial variable metapopulations (0.027 ± 0.015SE). All treatments exhibited negative density dependence of local population growth (HOM: slope= -0.662; SPA: slope= −0.7611; TEM: slope= −0.5219) and density dependence was lowest in the TEM metapopulations (F_{2,1630}=37.61; P<0.0001) (Fig. 3A).

Dispersal and metapopulation dynamics

Dispersal

Dispersal propensity was negatively affected by the average total (adults, juveniles and eggs) and female density in the metapopulation over treatments (Total: F_{1,177}=68.66; P<0.0001; Female: F_{1,177}=165.13; P<0.0001). The strength of density dependence of dispersal differed between treatments, with a steeper decline in the spatiotemporal heterogeneous metapopulations (F_{2,177}=20.91; P<0.0001) (Fig. 4). Overall, average dispersal propensity differed among treatments (F_{2,10.99}=20.91; P=0.0002) and was lowest in spatial heterogeneous metapopulations (0.063 ± 0.01SE) compared to the other two treatments (HOM: 0.29 ± 0.004SE; TEM: 0.20 ± 0.003SE). Obviously, because the slopes of TEM differ from those from SPA en HOM, only the differences among the latter are meaningful in the context of this study. Cross-correlation analysis of the time series of dispersal propensity and metapopulation density revealed no differences of cross-correlation coefficients among treatments (F_{2,54}= 0.11; P=0.8945). Neither did we find differences among lags (lag-unit = 1 week) (F_{9,54}=1.18; P=0.2679) nor did the lags between both time series differ among all treatments (F_{18,54}=1.11; P=0.3694).

Metapopulation size/density

Metapopulation density differed among treatments (F_{2,181}=27.19; P<0.0001). Metapopulation density of spatiotemporal heterogeneous metapopulations (10.33 ± 1.07SE individuals) was on average lower than of homogenous (14.42 ± 1.46SE individuals) and spatially heterogeneous
metapopulations (14.15± 1.44SE individuals) (Fig. 2B). The same results hold for metapopulation size. All treatments exhibited negative density dependence of metapopulation growth (HOM: slope=-0.54; SPA: slope=-0.65; TEM: slope=-0.63) but density-dependence at this level of organisation did not differ among all treatments (F_{2,18}=0.42; P=0.6545) (Fig.3B). Cross-correlation coefficients of the time series of juvenile density and adult density did not differ statistically among treatments (F_{2,18}=0.66; P=0.5219). Significant differences among lags (lag-unit = 1 week) were detected (F_{9,54}=5.13 ; P<0.0001) and a significant interaction between lag and treatment was detected (F_{18,54}=2.76 ; P=0.0021). Cross-correlation coefficients were significantly different from 0 for lags 1, 7, 8, 9 and 10 (Supplementary table S2.3). Over all treatments cross correlation coefficients differed significantly between lag 1 and 2, 3, 4, 5, 6, 8 and between lag 3 and 10 (Supplementary table S2.4).

(Meta)population variability and spatial synchrony

Treatment affected local population variability (α-variability) (F_{2}=46.14; P=0.0002). Local population variability was lowest in spatially variable metapopulations (0.56 ± 0.09SE), followed by homogeneous (0.93 ± 0.08SE) and spatiotemporal variable metapopulations (1.71± 0.08SE) (Fig. 5A). Metapopulation variability (γ-variability) differed significantly among treatments (F_{2}γ=5.50; P=0.044) (Fig.5B). Metapopulation variability was lower in spatially variable metapopulations (0.27 ± 0.07SE) and spatiotemporally variable metapopulations (0.29 ± 0.06SE) compared to homogeneous metapopulations (0.53 ± 0.06SE). Pairwise contrasts are, however marginally not-significant and only indicating trends (HOM-SPA t=3.01 P=0.054; t=2.71 HOM-TEM P=0.078). Over all treatments metapopulation variability was found to be lower than local population variability (t=33 P< 0.0001). Spatial synchrony differed significantly among treatments (F_{2}γ=22.47; P=0.0016) (Fig. 5C). Synchrony was lowest in metapopulations with spatiotemporal variation (0.17 ± 0.04SE) compared to homogeneous (0.57 ± 0.04SE) (t=6.43 P=0.0016) and spatially variable metapopulations (0.47 ± 0.04SE) (t=4.85 P=0.0068).

Discussion

Using artificial metapopulations of the spider mite *Tetranychus urticae*, we demonstrate that, compared to spatially homogeneous metapopulations consisting of equally sized patches, spatial variation in habitat availability decreases variability in metapopulation size and density dependent dispersal at the metapopulation level. Spatiotemporal variation in habitat availability induced higher patch extinction rates, thereby lowering average local population and metapopulation sizes. Such spatiotemporal variation simultaneously increased variability in local population size, decreased the
magnitude of density dependence in growth rates and decreased the synchrony of the local population dynamics. Overall, metapopulation variability was found to be lower than local population variability and increased population variability in spatiotemporal variable metapopulations reduced variability at the scale of the metapopulation (Table 1).

A range of empirical as well as theoretical studies (Benton et al. 2002, Drake & Lodge 2004) already demonstrated higher population extinction rates in temporally fluctuating relative to constant environments. These are predominantly caused by bottom-up effects of increased stochasticity in the form of fluctuating resource levels (Bull et al. 2007). External forcing of temporal variation in patch size by the manipulation of resources significantly increased variance in local population sizes and patch extinction rates. Evidently, such catastrophic events where extinct patches are colonized by few emigrants at lagged time intervals decreased the average population sizes.

Local population sizes of all stages were on average 50% higher in spatially heterogeneous metapopulations than those in other treatments. This increase resulted from the increased resource abundance in the double-sized patches (Fahrig 2007, Strevens & Bonsall 2011) and corresponds with previous studies on closed populations where the number of individuals is linked to the amount and distribution of available resources (Cameron & Benton 2004). Increases in local population sizes follow a linear response towards the availability of resources and are thus not associated with increased densities. Population growth under conditions where food resources are more abundant could be expected to lead to an extended period of time until density dependence kicks-in, thereby leading to higher local population densities and overshooting of the local carrying capacity. Absence of such a pattern indicates that population regulation occurs among all life stages, and that competition among the life stages is less asymmetrical than anticipated by higher per capita consumption rates in adult females. Alternatively, individuals may have evolved slower individual growth rates under repetitive stress as expected under high population densities, and experience lower maximal per capita growth rate to improve environmental tolerance or the efficiency of resource use (Dey et al. 2008; Monro & Marshall 2014). Moreover, the very low-extinction rates for HOM relative to SPA do not induce lower densities in HOM over generations because of lagged colonisation dynamics.

We observed overall a negative density dependence in population growth over the duration of the experiment, but a significant lower population growth in the spatiotemporal variable metapopulations. This accords with work of Strevens & Bonsall (2011), who indicated that the
dynamics of homogenous and spatially variable systems were best described by density-dependent population dynamical models, while spatiotemporal variable systems were best described by density-independent models. They attributed this result to elevated levels of dispersal reducing the competition for resources at the local scale (Strevens & Bonsall, 2011). We did not observe overall higher levels of dispersal in the spatiotemporal variable metapopulations, especially not at high densities. We instead attribute absence of density dependence to the lagged colonization of empty patches. Indeed, slopes of the density dependence became significantly different from zero when extinct populations were excluded (HOM: slope= -0.89; SPA: slope= -0.95; TEM: slope= -1.09; $F_{2,1264}=3.17$ $P=0.0425$). Because local population sizes in the spatiotemporally variable metapopulations were on average lower than those in the other metapopulation types, changes in density dependence did not increase population growth rates and neither compensated for the externally induced variation in habitat availability.

Contrary to expectations and earlier work focusing at the local population-level (De Roissart et al. 2014), we witnessed negative dependence of dispersal propensity in the metapopulation for all treatments. Rodriguez & Johnstone (2014) demonstrated that a negative density dependence of dispersal can be selected for in temporally stable environments where local differences in resource quality persist over multiple generations. In their theoretical work, density is not scaled to K, and evolved dispersal strategies relate more to heterogeneity in habitat quality or carrying capacity. Translated to our experimental setup, Rodriguez & Johnstone (2014) document patch size dependent emigration strategies, rather than local density dependent strategies. In absence of any adaptive explanation, we therefore attribute our observed negative relationship towards changes in body condition. In the mite metapopulations where dispersal was only made possible within limited time windows, large population densities lead to increased competition, resource depletion and subsequently an expected poorer body condition. Parallel work on more actively dispersing invertebrates and vertebrates has demonstrated that individuals in poor body condition can be constrained in dispersal due to lack of sufficient reserves to levy the costs and remain philopatric (Debeffe et al. 2014, O’ Sullivan et al. 2014). Generally, such a correlation is linked to energetic reserves to move between patches (energetic costs; Bonte et al. 20012). As for the spider mites and other passively dispersing organisms, larger amounts of reserves may also facilitate habitat selection (Bonte et al. 2011) and thus affect dispersal by changing cost-benefit balances during the immigration phase (Delgado et al. 2014).
Our results revealed a lower level of spatial synchrony of the patches in spatiotemporally variable metapopulations relative to the other metapopulation types. Dispersal and regional stochasticity are the two prominent factors that influence spatial synchrony. It is generally difficult to establish whether spatial synchrony is due to dispersal or regional stochasticity but which one is case makes an important difference to metapopulation dynamics (Hanski & Woiwod 1993, Bjornstad et al. 1999). If synchrony is due to high dispersal, high recolonisation rates will facilitate metapopulation persistence and may more than compensate for the negative effect of synchronous dynamics in generating correlated local extinctions. In contrary, if synchrony is due to regional stochasticity, metapopulation persistence time is necessarily decreased, in the same manner as the expected lifetime of a local population is decreased by increasing environmental stochasticity (Hanski & Woiwod 1993). Over all treatments, in our system, synchrony was observed to increase with dispersal (slope: 8.9; P=0.036). However for the different treatments separately, dispersal levels were lowest in homogeneous and spatial variable metapopulations and were coupled with higher synchrony relative to the spatiotemporal variable metapopulations, evidently caused by the spatially correlated resource renewals.

Metapopulation variability is significantly larger in homogeneous metapopulations than in spatially heterogeneous and spatiotemporal heterogeneous metapopulations. Metapopulation variability is determined by the product of local population variability and spatial synchrony among populations (Wang & Loreau 2014). Thus, the stabilizing effects can result from lower local variability, lower spatial synchrony, or both. In spatially heterogeneous metapopulations, patches with double resource abundance (i.e. carrying capacity) have larger population size and lower variability compared to smaller patches as also found in Strevens & Bonsall (2011). This results in lower average local population variability. Resource supply in the HOM and SPA metapopulations is highly synchronous and causes high synchrony in population dynamics in both treatments. Therefore, SPA decreases metapopulation variability by reducing local population variability. In contrast, TEM decreases metapopulation variability through reducing spatial synchrony. The resource supply in TEM is highly variable both in time and in space. On the one hand, the large temporal variation results in high temporal variability of local population dynamics. On the other hand, the large spatial variation substantially reduces spatial synchrony. The latter effect is so strong that although TEM generates higher local alpha variability and local extinction rates, the metapopulation variability is significantly lower than HOM. In consequence, an island-mainland metapopulation structure minimises both local and regional variability and thus extinction risk at these two scales. We suggest
to take this important insight as a starting point to explain the potential dominance of such metapopulations relative to more classical ones in nature.

Acknowledgements
ADR & DB were supported by a UGent BOF starting grant and FWO project G.0610.11. S.W. thanks the support by the TULIP Laboratory of Excellence (ANR-10-LABX-41).

Data Accessibility
Metadata population dynamics in artificial metapopulations data available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.18r5f (De Roissart et al. 2015).

References

This article is protected by copyright. All rights reserved.

Table and Figure legends

Table 1: Prediction on the expected changes in demography and population dynamics in the mainland-island (SPA) and classical (TEM) metapopulations relative to the patchy metapopulations (HOM). Arrows indicate the expected direction and sizes of the effect. Non-validated predictions are indicated by the Ø sign.

Figure 1: Schematic representation of the experimental setup of the invasion experiment. Top: metapopulation box containing local spider mite populations on bean leaves, bottom: metapopulation types: HOM – homogeneous configuration consisting of nine equally sized bean leaf
patches; SPA- spatial heterogeneous configuration consisting of three standard size leaf patches and three double-sized leaf patches; TEM – spatiotemporal heterogeneous configuration consisting of nine patches with temporally changing levels of resources in local populations (orange: not refreshed at this time step). Total metapopulation carrying capacity was kept constant and equal over all treatments.

Figure 2: Effects of metapopulation structure on density. A: effect on local population density, B: metapopulation density. Densities comprise average number of females, males, juveniles and eggs/cm². Equal notations indicate non-significant contrast for the respective measurements. Error bars represent one standard error.

Figure 3: Effects of metapopulation structure on density dependence. A: local population growth rate in relation to local population density and metapopulation structure, B: metapopulation growth rate in relation to the metapopulation density and structure. Densities comprise average number of females, males, juveniles and eggs/cm². The black line represents the modelled values of the HOM treatment, the red line of the SPA treatment and green line of the TEM treatment.

Figure 4: Effects of population density and metapopulation structure on dispersal. Dispersal propensity (number of dispersive mites/metapopulation density) in relation to the experienced metapopulation density and the metapopulation structure. Densities comprise average number of females, males, juveniles and eggs. The numbers of dispersive mites are plotted in the graph as dots. Coloured dots indicate predictions derived from the Poisson mixed model. The black dots represents the modelled values of the HOM treatment, the red ones those of the SPA treatment and green dots the TEM treatment.

Figure 5: Effects of metapopulation structure on the local, spatial and metapopulation-level variability. A: local α-variability, B: metapopulation γ-variability, C: spatial synchrony. Different notations indicate significant contrast for the respective measurements (for SB the differences indicate a borderline not-significant pairwise difference; $P<0.1$; see text) Error bars represent one standard error.
<table>
<thead>
<tr>
<th></th>
<th>Local pop. density</th>
<th>Local pop. extinction</th>
<th>Metapop. level dispersal</th>
<th>Metapop. size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainland-island metapopulation</td>
<td>↑ 3</td>
<td>↓ 1</td>
<td>↓ 3</td>
<td>↑ 1</td>
</tr>
<tr>
<td>Classical metapopulation</td>
<td>↓ 3</td>
<td>↑ 1</td>
<td>↑ 3</td>
<td>↓ 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Local pop. variability</th>
<th>Spatial synchrony</th>
<th>Metapop. variability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>