The presence of root-feeding nematodes — Not AMF — Affects an herbivore dispersal strategy

Annelies De Roissart, Eduardo de la Peña, Lien Van Oyen, Thomas Van Leeuwen, Daniel J. Ballhorn, Dries Bonte

Abstract

Plant quality and aboveground herbivore performance are influenced either directly or indirectly by the soil community. As herbivore dispersal is a conditional strategy relative to plant quality, we examined whether belowground biotic interactions (the presence of root-feeding nematodes or arbuscular mycorrhizal fungi) affect aerial dispersal of a phytophagous mite (Tetranychus urticae) through changes in performance of their host plant (Phaseolus vulgaris). Aerial dispersal strategies of mites were analyzed in wind-tunnel experiments, in which a unique mite pre-dispersal behavior (rearing) was assessed in relation to the presence of belowground biota on the host plant on which mites developed. Spider mite pre-dispersal behavior significantly increased with the experienced mite density on the host during development. Additionally, plants infected with root-feeding nematodes induced an increase of spider mite aerial dispersal behavior. The results highlight that belowground herbivores can affect population dynamics of aboveground herbivores by altering dispersal strategies.

1. Introduction

Dispersal, the movement of organisms away from their natal habitat, affects individual fitness, but also population dynamics, population genetics and species distribution (Bowler and Benton, 2005; Clobert et al., 2009). Consequently, dispersal is a key process in ecology as well as in evolutionary and conservation biology (Kokko and Lopez-Sepulcre, 2006; Ronce, 2007). Dispersal strategies are known to be shaped by selection pressures related to the spatial arrangement of habitat, kin competition and inbreeding avoidance (Bowler and Benton, 2005). Additionally, proximate factors related to, for instance, habitat quality and population density, are known to increase emigration from patches of adverse quality (Clobert et al., 2009; De Meester and Bonte, 2010). Environmental conditions experienced during development, not just those experienced during the dispersal phase, affect the body condition of an animal (Benard and McCauley, 2008) and as such the costs of dispersal (Bonte et al., 2012). Thus, such environmental conditions influence how far or how often individuals move away from their place of birth.

The habitat of small herbivores is mainly determined by the host plant on which they feed and live. Plants are known to respond to herbivore attack with the expression of various defense strategies. These traits range from chemical defenses, for instance alkaloids or herbivore-induced volatiles, to mechanical defenses such as trichomes or though cuticles (Baldwin, 1991; Bezemer and van Dam, 2005; Ballhorn et al., 2013a). Since plants are composed of interconnected organs, biotic interactions at specific plant regions are expected to induce strong effects on plant quality and the subsequent trophic interactions throughout all regions of the plant (Bezemer and van Dam, 2005; Ohgushi, 2005; van Dam and Heil, 2011). A prominent example of these plant-mediated trophic interactions is the link between the aboveground herbivores and mutualistic or antagonistic biota associated with roots (Wardle et al., 2004; De Deyn and Van der Putten, 2005; Hartley and Gange, 2009; Koricheva et al., 2009; Thamer et al., 2011). Interactions between above- and belowground plant herbivores are known to be complex. Positive, negative and neutral effects in both directions have been demonstrated (Masters, 1995; Tindall and Stout, 2001; Blossey and Hunt-Joshi, 2003; De Deyn et al., 2007). Interactions between plant mutualists, such as arbuscular...
mycorrhizal fungi (AMF), and aboveground biota result in a positive plant response in most cases (Hoffmann et al., 2009). However, depending on the feeding guild and host specialization of the herbivore, AMF can also have a neutral or negative effect on the plant (Graham and Abbott, 2000; Reynolds et al., 2006; Sudova and Vosatka, 2008; Hartley and Gange, 2009; Koriicheva et al., 2009). Previous studies indicate that belowground-induced changes in host quality can affect population dynamics of foliar herbivores by altering individual growth rates and population sizes of such aboveground herbivores (Awmack and Leather, 2002; van Dam et al., 2003; Hoffmann et al., 2009; Bonte et al., 2010). Changes in plant quality and plant chemistry caused by the induction of direct and indirect defense mechanisms may additionally induce signaling through the production of volatiles and as such impact behavioral aspects of foliar herbivores (Dicke, 2000; Ballhorn et al., 2013b).

The suitability of host plants for herbivores does not only depend on the intrinsic nutritional quality of the plants, but also on the presence and density of con- and heterospecific herbivores (Ohgushi, 2005). When increased local densities of herbivores lead to an enhanced depletion of resources, exploitative competition will be strong (Klopf, 1964) and local density may act as a source of information to adjust dispersal strategies (De Meester and Bonte, 2010). Previous studies have shown emigration propensity to increase with density for a variety of taxa (Bowler and Benton, 2005; De Meester and Bonte, 2010), including two-spotted spider mites (Li and Margolies, 1993b) that are subject of this study.

Two-spotted spider mites (Tetranychus urticae Koch; Acari: Tetranychidae) are generalist cell-content sucking herbivores (Helle and Sabelis, 1985) that feed on leaf parenchyma of a wide variety of plant species belonging to many different families. Due to their wide host range, severe feeding damage and rapid population growth these herbivores are a pest to many crops (Yano and Takafuji, 2002; Van Leeuwen et al., 2010). Spider mites have evolved a well-developed dispersal technique of aerial (long distance) dispersal (Osakabe et al., 2008) that is easily quantified under laboratory conditions as it is initiated by a unique pre-dispersal behavior, termed “rearing” (Li and Margolies, 1993a, 1994). Rearing entails orientating away from light sources and stretching of the forelegs (Osakabe et al., 2008). Previous studies demonstrated a strong underlying genetic component of this dispersal strategy (Li and Margolies, 1993a; Li and Margolies, 1994 for Tetranychus; Jia et al., 2002 for a predatory mite). The controlling proximate factors for changes in dispersal were host plant senescence, population density and aerial humidity (Li and Margolies, 1993b).

In the present study, the impact of belowground biota on the density-dependent aerial dispersal strategies of aboveground spider mites was examined. We applied two belowground treatments: herbivory by root-feeding nematodes (Pratylenchus penetrans; Tylchelda; Pratylenchidae) and the symbiosis with arbuscular mycorrhizal fungi (Glomus spp.; Glomerales: Glomaceae) (hereafter referred to as AMF). Dispersal strategies of spider mites were evaluated using wind-tunnel experiments. In a previous studies, in which the prevalence of local adaptation on spider mites was tested (Bonte et al., 2010), belowground nematodes induced water stress in host plants and induced a significant overall decrease in fitness (i.e. growth rate) in spider mites. Considering these results, increased levels of dispersal are expected, and more specifically an increased level of pre-dispersal behavior in these herbivores should be observed when mites are reared on plants infected with belowground living nematodes. A shift in the positive density-dependency of aerial dispersal is anticipated if nematodes induce changes in food quality and lower the overall carrying capacity on plant leaves. Since no effect of AMF on mite fitness was previously observed (Bonte et al., 2010), levels of dispersal in spider mites are not expected to change when reared on plants that have established this belowground symbiosis.

2. Material and methods

2.1. The model system

2.1.1. Plant treatments

We used common bean or snap bean (Phaseolus vulgaris L.; Fabales: Fabaceae) as host plant in our experiments. Beans were grown in 5 liter trays (15 × 15 × 35 cm; 15 plants/tray) under greenhouse conditions (25 °C, 16:8 LD photoperiod) in commercial standard potting soil (Structural™ Type 0; containing 1.25 g/m³ of 14–16–18 N–P–K fertilizer) that was sterilized by autoclaving (120 °C, 120 min, 1 atm) as a control treatment. Two experimental treatments were applied, in which plant parasitic nematodes P. penetrans (Tylchelda: Pratylenchidae) or a mixture of arbuscular mycorrhizal fungi (AMF) (Glomus spp.; Glomerales: Glomaceae) were added to the sterilized substrate (Fig. 1). Around 5000 Pratylenchus individuals (commercial inoculum; hzpc research B.V.) were added per plant-tray and allowed to establish a population on the beans for one month. In the AMF treatment, plants were inoculated by watering plant-trays with 500 ml of demineralized water containing 1 g of spore blend of Glomus spp. (commercial mycorrhizal inoculums; MycoGrow™ and the symbiosis was allowed to establish for one month (according to the manufactures protocol). This resulted in consistent root colonization of the bean plants by Glomus spp. All trays were watered twice per week with tap water. After one month, plants were transferred to growth chambers for inoculation with mites.

2.1.2. Validation of treatments

Levels of infection by AMF and root nematodes were verified in experimental plants at the end of the experiment. The substrate was removed from the roots by washing with water. Roots of 27 plants per treatment were cut in 1 cm fragments and nematodes were subsequently extracted using the Baermann funnel technique over a period of 96 h. This resulted in on average 1.31 ± 0.75 nematodes/g of soil and 44.3 ± 12.2 nematodes/g root. For AMF colonization, root samples were processed the same way and fragments were stained following the technique of Vierheilig et al. (1998) after cutting. Root samples were investigated using the technique of Giovannetti and Mosse (1980) using an Olympus microscope. The AMF treatment resulted in an average root infection of (21 ± 7%, n = 27). No nematode infections were observed in plants from the sterile and AMF treatments and no hyphae were observed in plants from the sterile and the nematode treatments.

2.1.3. Establishment of an experimental population of spider mites

A genetically diverse population of two-spotted spider mites (Van Leeuwen et al., 2008) that has been kept in stock culture on snap bean (P vulgaris L.) since 2000 was used to establish an experimental mite population. In order to obtain mites from plants of all treatments, a mix of 30 bean plants, containing 10 plant individuals from each of the three treatments was used for the experimental population (Fig. 1). Each plant individual was potted separately to avoid mixing of belowground treatments. Every third week, before all plants died due to herbivory, a random subsample of mites was used to inoculate the next mixture of bean plants. Local adaptation towards one of the three treatments was avoided by (i) the diffusive spread of the adult mites over the plants from the inoculation point, (ii) the heterogeneous bean stock with (iii) random inoculation protocol. This resulted in consistent root colonization of the bean plants by Glomus spp. All trays were watered twice per week with tap water. After one month, plants were transferred to growth chambers for inoculation with mites.
in relation to the considered plant types (Bonte et al., 2010; unpub. data). Mites for the dispersal experiments were sampled from the different plant types in this heterogeneous stock population.

2.2. Host plant performance

To analyze the impact of nematodes or AMF on plant performance, we used 10 two-week old bean plants from every belowground treatment (of the same growth stage as the plants provided to the mites). Above- and belowground biomass were measured after drying the plants for 40 h in an air-flow oven at 70 °C. For another three bean plants, nitrogen content was analyzed by ISO 5983-2 standards following the Kjeldahl method and measured with a continuous flow analyzer (Foss Fiastar 5000). Phosphorus-content was analyzed by colorimetry (EC L279/15 2012.71) (A more detailed methodology is provided in the Supplementary material).

Three subsamples from each plant were taken for chemical analyses. Water content of shoots and roots was calculated from the relative difference between fresh and dry weight. Bean plants from the genus Phaseolus commonly show a variety of nitrogen- and carbon-based plant defenses. We tested whether cyanogenic precursors were present in plant tissue (Ballhorn et al., 2011), but all plant individuals tested were not cyanogenic (see also Bonte et al., 2010).

2.3. Aerial dispersal protocol

2.3.1. Selection of dispersive females

One or two days after mating T. urticae females disperse aerially (Li and Margolies, 1994). In order to obtain females of the same age, available quiescent deutonymph (1 day before adult emergence) females were transferred from each plant type of the breeding stock population to a mite-free 1 cm × 1 cm bean leaf disc of the same plant type as from which they were collected. Spider mites do not move during development. Therefore the plant of collection resembles the plant of development (Fig. 1). Three guarding males per female were added in order to guarantee mating immediately after molting of females to the adult stage. The leaf discs were placed with the abaxial face upwards in Petri dishes (diameter 4 cm) on wet cotton to avoid wilting and prevent mites from escaping. Leaf discs were stored in a growth chamber (16:8 day:night light regime, 60% RH, 25 °C). Prior to mite transfer for the aerial dispersal assay, we recorded mite density (average number of individuals per cm²) on the leaf from which the mites were collected. All mites collected from the same leaf were analyzed together and considered as one unit of replication in our statistical analyses.

2.3.2. Aerial dispersal assay

To evaluate the effect of our treatments and mite density on rearing dispersal behavior, mated females were transferred to test arenas. These dispersal tests were conducted from October 2008–April 2009 on a total of 1158 mites within a total of 28 test days comprising of more than 180 h of observation. We applied the same setup as used by Li and Margolies (1993a, 1994). The test arenas consisted of 1 cm² black painted plastic discs placed on soaked cotton dishes in order to prevent mites from escaping. Depending on the number of available mites, between one and ten individuals from one leaf (from plants with one of the three belowground treatments) were placed on one cm² disc [no effects of mite densities on the test dishes were observed during test trials (F1,135 = 0.95; P = 3325)]. We applied an upward (30°) wind current of 1.5 m/s (produced by a fan) to the test arenas with a strong light source (990 lumen) at the source of the air current. As mites perform rearing behavior before entering the air column, we were able to count and select the number of mites performing this behavior (for at least 5 s) in the subsequent 3 h. Mites that showed this behavior were immediately removed in order to avoid pseudo-replication. We simultaneously tested mites derived from plants of all three treatments.

2.4. Statistical analyses

All plant performance parameters were averaged per plant individual and subsequently analyzed using ANOVA with treatment as independent factor. Generalized linear mixed models (GLMM) for binomially distributed data with logit-link and correction for potential overdispersion were used to analyze the proportion of mites displaying rearing behavior. In these logistic regressions, the number of mites that showed the pre-dispersal behavior relative to the total number of tested mites from one leaf was the dependent factor. Independent factors were “total mite density on the leaf of development” (continuous factor) and the “treatment of the host plant”. In order to control for possible correlation due to the
common date of testing, we included “date” as a random effect. Because of this random error structure, we visualized the modeled regression instead of multiple regression lines for each day when tests were performed. In addition, rearing frequencies for subsamples were plotted when consisting of more than 10 tested mites in order to minimize scatter from small subsamples with low weight in the entire regression analysis. Effective degrees of freedom in all analyses were estimated by Satterthwaite procedure (Verbeke and Molenberghs, 2000). All analyses were performed with SAS 9.1 (Proc Glimmix; SAS Institute, 2001).

3. Results

3.1. Host plant performance

The belowground treatment had a significant effect on the plant biomass allocation and nutritional composition (Table 1). Nematodes and AMF had a detrimental effect on total and shoot biomass (Fig. 2a). Nematodes also decreased root biomass in comparison to plants that were grown with AMF and sterile substrate (Fig. 2a). Root biomass allocation (i.e. the root/shoot ratio) was higher in AMF plants (0.44 ± 0.08 SE) than in plants from the nematode (0.14 ± 0.02 SE) and the sterile-substrate (0.14 ± 0.03 SE) treatments. N and P concentration were lower in the control than in nematode or AMF treated plants (Fig. 2c). Water content for roots averaged 86.23% ± 0.60% SE overall treatments (no significant differences among treatments were observed; F2,27 = 2.18; P = 0.138). Shoot water content was an average of 3% lower in plants treated with nematodes compared to plants from the sterile-substrate treatment (Fig. 2b) (Table 1).

3.2. Aerial dispersal

The probability for an individual female mite to perform the rearing dispersal behavior increased with increasing mite density on the host (\(\beta = 0.021 \pm 0.007; F_{1,126} = 8.39; P < 0.005 \)). This positive density-dependence was independent of the treatment (interaction density × treatment \(F_{3,123} = 1.21; P = 0.310 \)), but overall rearing probabilities depended on the host treatment (\(F_{2,126} = 5.53; P = 0.005 \); see Fig. 3). Mites that developed on plants inoculated with nematodes showed a higher rearing probability compared to mites from the sterile treatment (Fig. 4; Tukey’s test: \(t_{126} = 3.27; P = 0.004 \)). Treatment with AMF had no effect on the mite rearing dispersal behavior (differences in the two other pairwise combinations were not significant; Tukey’s test: \(t_{126} < 1.81; P > 0.05 \)).

4. Discussion

It is generally acknowledged that a change in the belowground community structure can affect plant performance and population growth of aboveground herbivores (Wardle et al., 2004; De Deyn and Van der Putten, 2005; Kaplan et al., 2008; Hoffmann and Schausberger, 2012), with cascading effects on higher trophic levels (Van der Putten et al., 2001). Prevailing mechanisms behind these plant-mediated multitrophic interactions are diverse, but

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>(F)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total biomass (g)</td>
<td>12.44</td>
<td><0.0001</td>
</tr>
<tr>
<td>Aboveground biomass (g)</td>
<td>13.69</td>
<td><0.0001</td>
</tr>
<tr>
<td>Belowground biomass (g)</td>
<td>8.86</td>
<td><0.0001</td>
</tr>
<tr>
<td>Root/shoot ratio</td>
<td>11.26</td>
<td><0.0001</td>
</tr>
<tr>
<td>Root water content (%)</td>
<td>2.18</td>
<td>0.138</td>
</tr>
<tr>
<td>Shoot water content (%)</td>
<td>42.95</td>
<td><0.0001</td>
</tr>
<tr>
<td>N-content (% dry weight)</td>
<td>7.09</td>
<td>0.026</td>
</tr>
<tr>
<td>P-content (% dry weight)</td>
<td>17.81</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Fig. 2. Effects of the belowground biotic treatment on plant performance. A: plant dry biomass; B: shoot water content; C: N and P-content. Equal notations indicate non-significant contrast for the respective plant performance measurements. Error bars represent standard errors.
these mechanisms are always mediated through changes in host plant quality and/or the up-regulation of plant defense strategies (Masters and Brown, 1997; Van der Putten et al., 2001). The complexity of these interactions is, however, enormous and depends on variation in abiotic conditions at both temporal and spatial scales (Wardle et al., 2004; Vandegheuchte et al., 2010; Thamer et al., 2011). The impact of belowground biota on oviposition and feeding behavior of foliar herbivores has been demonstrated by Anderson et al. (2011). Here, we document the impact of belowground biota on the dispersal behavior of aboveground herbivores for the first time.

Rearing rates for aerial dispersal were positively associated with the mite population density on the source leaf. This corresponds to previous findings of positive density-dependent strategies in vertebrates (Matthesen, 2005) and invertebrates (De Meester and Bonte, 2010; Bitume et al., 2013) and stresses the need to consider the intraspecific competition as a proximate driver of individual dispersal (Clobert et al., 2009). In the case of passive dispersal strategies, costs of dispersal are very high (Bonte et al., 2012). However, if habitat quality decreases, costs of philopatry will exceed those of dispersal and an induction of high dispersal rates is expected (Travis et al., 1999; Hovestadt et al., 2001; Kun and Scheuring, 2006).

No detectable effect of AMF on mite fitness (Bonte et al., 2010) and dispersal were observed despite a significant decrease of biomass in plants treated with AMF. The observed neutral to negative effect of AMF on plant performance might be due to the use of young 2-week old bean plants (Johnson et al., 1997). In the first weeks following germination, plants obtain their necessary resources from seed reserves. In this stage, the loss of carbon to the fungus decreases allocation to photosynthesis or defense and AMF can become parasitic (Johnson et al., 1997). Because dispersal evolves as an alternative behavioral strategy to philopatry, both strategies should have equal fitness expectations (Clobert et al., 2005; Bonte et al., 2012). As such, while some plant quality parameters were affected by this treatment, they appear not to impact the mite’s future fitness (Bonte et al., 2010) and therefore do not have a strong impact on the aerial dispersal strategy.

In nematode infected plants, dispersal propensity was anticipated to increase under high mite population densities due to a decrease of plant quality or an increased production of defensive compounds, thereby lowering the mite carrying capacity. Aerial dispersal was, however, higher in mites that developed on nematode-treated hosts. Increased dispersal of spider mites therefore appears to be caused by their development on plants with belowground nematode herbivory. This belowground interaction resulted in decreased water content and/or the production of unidentified defensive metabolites. Because no change in the density threshold has been observed, increased dispersal rates are regarded as a response to future fitness costs when staying on a host of subordinate quality (Bonte et al., 2010) due to, for instance, the production of secondary defense metabolites (van Dam et al., 2005). In our experiment, no declines in nutritional plant tissue quality were detected (Bonte et al., 2010) nor detectable levels of cyanogenic potential in nematode treated plants (Ballhorn et al., 2007). Total nitrogen-content is known to be a poor predictor of cyanogenic potential (Awmack and Leather, 2002; Schoonhoven et al., 2005). The absence of cyanogenic glycosides does not rule out the prevalence of hitherto unidentified nitrogen-containing defensive metabolites (e.g. alkaloids or tannins) which in some cases reduce digestive efficiency of arthropod herbivores and may have caused the increased dispersal response.

Shoot water content was systematically lower in plants treated with nematodes. A decrease in shoot water content due to root herbivory has previously been described as mechanism negatively affecting aboveground herbivore presence and performance (Erb et al., 2009, 2011). Since plant structural and biochemical parameters changed in multiple and non-correlated ways after treatment with belowground biota, we were not able to assign one exact plant trait to be the driving force for the observed change in dispersal potential, and likely, the response is due to multiple, mutually interacting changes in plant quality.

In conclusion, our study demonstrates that plant growth is negatively affected by AMF and nematode infection of the roots. Since only nematode herbivory affected the overall level of aerial dispersal, without a shift in density dependency, we attribute specific changes in plant quality like water turgor, but potentially also other factors, as the proximate cause of the increased aerial dispersal.
dispersal rates. Because such effects were not found for AMF, our results demonstrate that at least some specific belowground biotic interactions in the plant rhizosphere affect dispersal of aboveground herbivores. Soil biotic interactions may consequently affect the dispersal strategies of aboveground herbivores and their eventual spatial population dynamics (Sackett et al., 2010).

Acknowledgments

This project was funded by FWO projects G.0610.11, TVL and EdIP are a post-doctoral research fellow of the Research Foundation Flanders (Belgium) (FWO). ArD is funded by BOF-Ugent. DB was supported by the FWO research network Evo-Net (Eco-Evolutionary dynamics). Startup funds to DJ, Ballhorn from Portland State University are gratefully acknowledged. We thank Stefanie Kautz and Adrienne L. Godschałk (Portland State University) for language editing and critical reading of the manuscript.

Appendix A. Supplementary material

Supplementary data related to this article can be found online at http://dx.doi.org/10.1016/j.actao.2013.07.005.

References