Urbanization-driven changes in web building and body size in an orb web spider

Maxime Dahirel1,2 | Maarten De Cock1 | Pieter Vantieghem1 | Dries Bonte1

1Terrestrial Ecology Unit, Department of Biology, Ghent University, Gent, Belgium
2Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Rennes, France

Correspondence
Maxime Dahirel
Email: maxime.dahirel@yahoo.fr

Funding information
Federaal Wetenschapsbeleid; Fyssen Foundation

Handling Editor: Niels Dingemanse

Abstract
1. In animals, behavioural responses may play an important role in determining population persistence in the face of environmental changes. Body size is a key trait central to many life-history traits and behaviours. Correlations with body size may constrain behavioural variation in response to environmental changes, especially when size itself is influenced by environmental conditions.
2. Urbanization is an important human-induced rapid environmental change that imposes multiple selection pressures on both body size and (size-constrained) behaviour. How these combine to shape behavioural responses of urban-dwelling species is unclear.
3. Using web building, an easily quantifiable behaviour linked to body size and the garden spider Araneus diadematus as a model, we evaluated direct behavioural responses to urbanization and body size constraints across a network of 63 selected populations differing in urbanization intensity. We additionally studied urbanization at two spatial scales to account for some environmental pressures varying across scales and to obtain first qualitative insights about the role of plasticity and genetic selection.
4. Spiders were smaller in highly urbanized sites (local scale only), in line with expectations based on reduced prey biomass availability and the Urban Heat Island effect. Web surface and mesh width decreased with urbanization at the local scale, while web surface also increased with urbanization at the landscape scale. The latter two responses are expected to compensate, at least in part, for reduced prey biomass availability in cities. The use of multivariate mixed modelling reveals that although web traits and body size are correlated within populations, behavioural responses to urbanization do not appear to be constrained by size: there is no evidence of size–web correlations among populations or among landscapes, and web traits appear independent from each other.
5. Our results demonstrate that responses in size-dependent behaviours may be decoupled from size changes, thereby allowing fitness maximization in novel environments. The spatial scale at which traits respond suggests contributions of both genetic adaptation (for web investment) and plasticity (for mesh width). Although fecundity decreased with local-scale urbanization, A. diadematus abundances were similar across urbanization gradients; behavioural responses thus appear overall successful at the population level.
1 | INTRODUCTION

In animals, behaviour is often considered as the first route of adaptation to rapid environmental changes (Wong & Candolin, 2015). Numerous examples of both adaptive and maladaptive behavioural changes in response to human-induced environmental changes have now been recorded (Lowry, Lill, & Wong, 2013); the potential costs and constraints associated with these behavioural changes are, however, poorly understood. Behaviours may be linked to metabolic and physiological processes that directly impact fitness (Bonte et al., 2012; Debecker, Sanmartín-Villar, de Guinea-Luengo, Cordero-Rivera, & Stoks, 2016). When behaviour is correlated with other traits, conflicting selection pressures may hinder adaptation, leading to mismatches between the expressed and optimal behaviours in the new environment (Sih, 2013; Wong & Candolin, 2015). In particular, many behaviours are correlated with body size (e.g. Gregorič, Kuntner, & Blackledge, 2015; Stevens et al., 2014), a key trait that can itself be directly impacted by environmental changes (Oliveira, Freitas, Scheper, & Kleijn, 2016; Renaud, Hutchinson, Loeb, Poveda, & Connelly, 2016).

Urbanization is one of the most prominent human-induced environmental changes, with cities now harbouring more than half of the global human population (Seto, Güneralp, & Hutyra, 2012; United Nations Population Division, 2015). Direct and indirect impacts of the urbanization process include habitat fragmentation, increased temperatures (the “Urban Heat Island” effect), elevated levels of pollution and changes in resource availability due to the decline of key species and/or the increased availability of anthropogenic food sources (Alberti, 2015; Parris, 2016). This cocktail of environmental changes means cities present novel ecological conditions never encountered before in organisms’ evolutionary histories (Alberti, 2015; Hendry, Gotanda, & Svensson, 2017; Johnson & Munshi-South, 2017). This drives changes in community taxonomic and functional composition (Dahrel, Dierick, De Cock, & Bonte, 2017; Pino et al., 2017) as well as intraspecific phenotypic changes (plastic and/or genetic: Alberti et al., 2017; Brans, Jansen, et al., 2017; Johnson & Munshi-South, 2017; Lowry et al., 2013) at an unprecedented rate (Alberti et al., 2017). Cities can therefore be seen as key “natural experiments” to understand eco-evolutionary consequences of global change (Johnson & Munshi-South, 2017).

Orb web spiders (Araneae, Araneidae) are a unique model for the study of behaviour, as their foraging behaviour is archived in their web (Foelix, 2010; Figure 1). Detailed quantification of the orb web structure therefore allows inferences on both the implemented foraging strategies (from web architecture) and the energetic investments in web production (Sherman, 1994). Keeping the total investment equal, larger spacing of the capture threads allows the construction of larger webs and an increase in prey interception; conversely, pressures to build small meshes to, for example, increase prey retention (Blackledge & Zevenbergen, 2006) come at the cost of reduced capture areas (Sandoval, 1994). Spiders can maximize both retention and interception simultaneously only by increasing the quantity of capture silk per web (Eberhard, 2013; Sherman, 1994). Variation in web-building behaviour has been recorded in relation to ageing and growth (e.g. Witt, Rawlings, & Reed, 1972) and in response to a wide variety of environmental changes. Spiders experiencing lower prey biomass have for instance been shown to increase the capture area of their web to increase its efficiency (Mayntz, Toft, & Vollrath, 2009). Spiders may also use information on the size of recently caught prey to optimize the web mesh width and capture area (Schneider & Vollrath, 1998). The architecture and size of webs are influenced by weather, both through changes in the physical pressures the web has to withstand and through changes in the internal physiological state of the building spider (Barghusen, Claussen, Anderson, & Bailer, 1997; Vollrath, Downes, & Krackow,

**FIGURE 1** Left: Photograph of a female Araneus diadematus showing the distinctive cross pattern on the abdomen (credit: Maxime Dahrel); CT_{w}: cephalothorax width, used as a proxy of body size. Right: Diagram of an A. diadematus web, with radii spanning from the central hub supporting a sticky silk thread spiral (bold). $D_v$ and $D_h$ refer to the vertical and horizontal diameters of the full web ($D_{v,web}$) and the free zone ($D_{v,free}$), used to estimate the capture area (in grey); the number of threads of the capture spiral on the horizontal and vertical axes of the capture area is used to calculate the average mesh width.
Web building can also be disturbed by exposure to various chemical pollutants (Benamú, Schneider, González, & Sánchez, 2013) and constrained by space availability in the current habitat (Vollrath et al., 1997). Most of these environmental drivers are highly altered by urbanization (Dahirel et al., 2017; Parris, 2016) and may impose either constraining or adaptive changes in web building.

Besides these direct responses, environmental changes may also influence spider foraging behaviour indirectly, as web building is coupled to body size both within and among species. Larger spiders produce on average larger and often less densely structured webs (Gregorić et al., 2015; Heiling & Herberstein, 1998). This may stem from physiological constraints such as the quantity of silk available or the need for larger spiders to capture larger prey to fulfil energy requirements, as well as physical constraints, as spiders seem to use their own body as a "measurement stick" during web building (Gregorić et al., 2015; Venner, Bel-Venner, Pasquet, & Leborgne, 2003; Vollrath, 1987). Increased temperatures in urban areas are expected to lead to reduced body size in ectotherms through increases in metabolic rates (Brans, Jansen, et al., 2017; Horne, Hirst, & Atkinson, 2015; Sheridan & Bickford, 2011). We may expect urbanization-induced body size reduction to be even stronger when urbanization decreases resource availability during development (Dahirel et al., 2017), as spider adult size is also highly resource dependent (Mayntz, Toft, & Vollrath, 2003). This expected size reduction may thus constrain optimal web-building behaviour, for instance limiting the ability of spiders to increase web size to catch more prey when needed.

Behavioural responses to urbanization and other human-induced rapid environmental changes, whether adaptive or not, can result from plasticity and/or genetic changes (Sih, Stamps, Yang, McElreath, & Remanofsky, 2010; Tuomainen & Candolin, 2011). A formal understanding of the underlying sources of phenotypic (behavioural) variation in response to urbanization can only be achieved by experimental work (Johnson & Munshi-South, 2017; Merilä & Hendry, 2014). However, the spatial scale of phenotypic variation, relative to the scale of dispersal, may provide first insights. Spiders disperse passively by "ballooning" (Bonte, 2012); although very long-distance dispersal events occur, most dispersers are thought to land within a few hundred metres from their departure point (Bell, Bohan, Shaw, & Weyman, 2005; Croucher, Oxford, & Gillespie, 2011; Reed, Teoh, Stratton, & Hataway, 2011; Reynolds, Bohan, & Bell, 2007). Once airborne, individuals have no control over their trajectory, meaning adaptive habitat choice (Edelaar & Bolnick, 2012) is unlikely. Gene flow is thus expected to swamp genetic differentiation at small spatial scales; any response to environmental variation with a spatial grain equal to or smaller than the typical dispersal event is more likely to result from plasticity. By contrast, evidence of phenotype-environment matching at larger spatial scales (several kilometres) suggests putative genetic adaptation (Macdonald, Llewelyn, & Phillips, 2018; Richardson, Urban, Bolnick, & Skelly, 2014).

Here, we study and quantify shifts in body size and web building in response to urbanization and then use a multivariate mixed modelling approach to identify the contribution of size constraints to (adaptive) behavioural variation. We used the garden spider Araneus diadematus as a model; this species is one of the most common species in both urban and non-urban orb web spider communities in western Europe (Dahirel et al., 2017). Araneus diadematus adjusts its web-building behaviour depending on abiotic conditions and the availability/characteristics of potential prey (Bonte, Lanckacker, Wiersma, & Lens, 2008; Schneider & Vollrath, 1998; Vollrath et al., 1997); webs are recycled and rebuilt daily, allowing spiders to match currently/recently experienced environmental conditions (Breed, Levine, Peakall, & Witt, 1964).

We studied responses to urbanization at two independent spatial scales to obtain indications on the roles of genetic adaptation versus plasticity and to account for the fact that environmental correlates of urbanization may be scale dependent (Kaiser, Merckx, & Van Dyck, 2016; McDonnell & Hahs, 2015; Merckx et al., 2018). We used a well-studied network of urban and non-urban sites in which differences in resource availability and temperature have previously recorded (Dahirel et al., 2017; Kaiser et al., 2016; Merckx et al., 2018). Although prey numbers are roughly constant across urbanization levels, prey biomass is expected to be lower in highly urbanized sites as the size of the average prey declines by about 18% (Dahirel et al., 2017). Average temperatures are higher in highly urbanized sites, but this effect is mainly detected when considering urbanization at the most local scale (about +1-2°C) and weaker to non-significant at larger spatial scales (Merckx et al., 2018).

In this context, we expected A. diadematus individuals to become smaller with urbanization and the decrease in size to be stronger with local-scale urbanization as the effects of resource reduction and increased temperature cumulate. We expected A. diadematus to present adaptive shifts in web-building behaviour in response to urbanization-related resource reduction, namely an increase in web investment/web area to increase interception and a narrowing of mesh width to increase retention. If spiders were unable to display such adaptive behavioural responses, we expected to see negative fitness consequences through lower individual fecundity and/or population success, measured by spider density. Assuming correlations between web traits and body size were important and persisted across urbanization contexts (which may not be the case; Fischer, Ghalambor, & Hoke, 2016; Peiman & Robinson, 2017), we expected the mesh reduction response to be facilitated by reduced body size, while a smaller body size should have hindered spiders’ ability to build larger webs. Mesh width and web area responses should thus be stronger at the scale at which web trait and body size are the most/the least strongly correlated, respectively.

2 | MATERIALS AND METHODS

2.1 | Study species

Araneus diadematus Clerck 1757 is a common orb-weaving spider present across the Holarctic in a wide range of natural and human-altered environments, building its web in shrubs and tall herbaceous vegetation (Lee & Thomas, 2002; Nentwig, Blick, Gloor, Hänggi, & Kropf, 2016). Its distinctive dorsal cross pattern makes field
identification easy (Roberts, 1993; Figure 1). Females usually become mature in late summer and can survive through to late autumn (Lee & Thomas, 2002). In cities, *A. diadematus* mostly settles in gardens and green spaces as opposed to roadsides or close to buildings (Van Keer, Vanuytven, De Koninck, & Van Keer, 2010).

### 2.2 | Study sites

We sampled *A. diadematus* females in 63 sites (hereafter "populations") across a well-studied network of urban, rural and natural landscapes in northern Belgium (Brans, Govaert, et al., 2017; Dahirel et al., 2017; Kaiser et al., 2016; Merckx et al., 2018; Piano et al., 2017; Figure 2), one of the most urbanized and densely populated regions in Europe (United Nations Population Division, 2015). Urbanization was studied at two different spatial scales, thanks to a two-step stratified selection design, with 3 × 3 km landscapes ("landscape-scale" urbanization) being selected first and then three 200 × 200 m sites ("local-scale" urbanization) chosen within each landscape. We used the percentage of surfaces occupied by buildings as our proxy for urbanization (extracted from the large-scale reference database, a reference map of Flanders; https://overheid.vlaanderen.be/en/producten-diensten/large-scale-reference-database-lrd). This metric is precise down to the individual building and thus usable at both spatial scales, but excludes other artificialized surfaces such as roads, railways, parking spaces or pavements; hence, percentages higher than 10% already correspond to highly urbanized contexts. We cross-checked this metric with the percentage of artificial surfaces based on the CORINE Land Cover database (European Environmental Agency, 2016) (Level 1: "Artificial surfaces," excluding classes 1.41 and 1.42 corresponding to human-created urban green spaces). This second metric includes all artificialized surfaces but, due to its coarser resolution (minimum mapping unit 25 ha), cannot be used at smaller spatial scales. Both metrics were highly correlated ($N = 21$ landscapes, Spearman’s correlation coefficient $= 0.95$, $p = 5.17 \times 10^{-6}$, Supporting Information Figure S1). Twenty-one 3 × 3 km landscapes were selected and sorted into three urbanization levels (seven landscapes by level). High-urbanization landscapes had more than 10% of their area covered by buildings (equivalent to more than 70% of artificial surfaces based on CORINE). Low-urbanization landscapes had less than 3% of their surfaces occupied by buildings (less than 20% of artificial surfaces based on CORINE); additionally, they were selected so that more than 20% of their surface was covered by so-called ecologically valuable areas (areas with rare, vulnerable or highly diverse vegetation based on the Flanders Biological Valuation Map; Vriens et al., 2011). A third class of "intermediate" landscapes had between 5% and 10% of their surface covered by buildings (between 20% and 70% of artificial surfaces based on CORINE). Within each landscape, three 200 × 200 m sites (one per urbanization level) were selected this time based on the percentage covered by buildings only. Vegetated areas in chosen sites were...
unforested and dominated by low vegetation (grasslands/lawns with low shrubs and occasional trees in, for example, gardens, parks or hedgerows). Sites were separated on average by 39.4 km (range: 0.2 to 91.3 km, SD: 20.7 km). Sites within the same landscape were separated on average by 1.4 km (range: 0.2 to 3.3 km, SD: 0.8 km), while sites belonging to different landscapes were separated on average by 40.33 km (range: 5.6 to 91.3 km, SD: 19.75 km, Figure 2).

2.3 Spider collection and phenotypic measurements

Populations were sampled from 25 August to 5 October 2014, that is during the first part of the reproductive period (Lee & Thomas, 2002). One landscape (three sites) was visited per day; there was no significant link between landscape-level urbanization and sampling date (ANOVA; N = 21 landscapes, F2,20 = 0.009, p = 0.991). In each visited site, between seven and 11 adult females per population (Ntotal = 621, average ± SD: 9.86 ± 0.74) were sampled on their webs and stored in 70% ethanol; spiders’ cephalothorax width was measured under binocular microscope and used as a proxy for body size (Bonte et al., 2008; Figure 1). Of these 621 spiders, 193 individuals caught in the nine landscapes of the Ghent region (Figure 2) were also dissected and the number of mature eggs recorded. As A. diadematus webs are conspicuous and located in similar habitats (grassland–shrub mosaics taken in the broad sense) independently of urbanization levels (Lee & Thomas, 2002; Van Keer et al., 2010), we were also able to collect reliable population density data (number of adult female spiders observed per 200 × 200 m site in 4.5 person-hours) in the 62 sites (out of 63) sampled in the community-level study by Dahirel et al. (2017).

Based on measurements taken in the field (vertical and horizontal diameters of whole web and free central zone, number of sticky silk spirals in each web quadrant, Figure 1), we estimated two design parameters for the webs belonging to sampled spiders: the web capture area surface (considering orb webs as ellipses, following Herberstein & Tso, 2000) and the mesh width (interval between sticky spirals, averaged over the horizontal and vertical axes).

2.4 Statistical analysis

All analyses were carried out using R, version 3.5 (R Core Team, 2018). Body size, web traits and sampling date values were scaled to unit standard deviation prior to inclusion in models (see Table 1 for descriptive statistics), to improve model convergence and make results comparable across parameters and variables.

The number of adult spiders per site was analysed using a Poisson GLMM. Spider numbers were modelled as a function of local and landscape levels of urbanization, as well as sampling date, with a random effect of landscape identity added to account for spatial clustering of populations in landscapes.

We followed broadly Araya-Ajoy and Dingemanse (2014)’s approach and analysed spider traits and their correlations in two steps.

First, each trait (body size, web surface, mesh width, egg number) was analysed separately using univariate mixed models. These models included fixed effects of local and landscape levels of urbanization as well as sampling date, with random effects of landscape and site of origin to account for non-independence of observations. Body size, web surface and mesh width were analysed using linear mixed models, and egg number was analysed using a Poisson GLMM.

Second, we used a multivariate mixed model (Araya-Ajoy & Dingemanse, 2014; Dingemanse & Dochtermann, 2013) to estimate trait covariances/correlations and partition them across hierarchical levels (correlations among landscapes, among populations and (residual) within populations). Fixed effects, random intercepts and error families for each trait were included as in univariate models.

All models were fitted using the MCMCgamm package (Hadfield, 2010). We used uninformative default priors for fixed effects, inverse Wishart priors for the residual (co)variances and parameter-expanded priors for among-landscape and among-population (co) variance matrices. Degrees of belief v for the (co)variance matrices were set to weakly informative values, that is the dimension of the corresponding matrix (1 for univariate models, 4 for the multivariate models). Chains ran for (univariate/multivariate model) 1,000,000/3,300,000 iterations, with the first 250,000/300,000 iterations discarded as burn-in and sampling every 750/3,000 iteration after burn-in, resulting in 1,000 samples per chain with serial autocorrelation <0.1 for all model parameters. We ran three chains per model, checked mixing graphically and confirmed chain convergence using the Gelman–Rubin statistic (using the coda package; Plummer, Best, Cowles, & Vines, 2006; all R were ≤1.03). There was no evidence of residual spatial autocorrelation in any of the models; 95% confidence intervals of spline correlograms (fitted using the ncf package; Bjornstad, 2016) overlapped with 0 at all distances and for all response variables. Model diagnostic plots are presented in Supporting Information Figures S2–S30c.

3 RESULTS

3.1 Spider population density

The number of spiders found per site was not influenced by urbanization at either spatial scale (95% credible intervals for all model
Spiders built webs with narrower mesh when local-scale urbanization increased (low-to-high urbanization: −9.67% [−14.96%, −4.07%]). Mesh width was not influenced by landscape-scale urbanization, but increased with sampling date. Web surface decreased with increasing urbanization at the local scale (low-to- intermediate urbanization: −12.93% [−23.83%, −1.62%]; low-to-high urbanization: −20.28% [−31.12%, −9.37%]). It increased with landscape-scale urbanization (low-to- intermediate urbanization: +26.19% [+2.25%, +54.63%]; low-to-high urbanization: +25.43% [+0.5%, +54.54%]) and with time.

Local urbanization (both intermediate and high levels) decreased fecundity (number of eggs per spider) at the local scale.

### 3.2 Sources of variation in spider traits: Univariate models (Table 2, Figure 3)

Body size, as measured by cephalothorax width, decreased with local-scale urbanization, with spiders being 8.30% smaller [95% credible interval: −14.03%, −2.34%] in highly urbanized sites compared to populations from low-urbanization sites. There was no effect of landscape-scale urbanization or sampling date.

### Table 2 Sources of variation in population density and spider traits.

Parameters from univariate mixed models are presented with 95% credible intervals in parentheses (fixed effects parameters that do not include 0 in their 95% credible interval are in bold). The proportions of total and among-population variation explained by models are calculated using Nakagawa and Schielzeth (2013)’s formulas for conditional and marginal $R^2$.

<table>
<thead>
<tr>
<th>Fixed effects</th>
<th>Population density (per 4 ha)</th>
<th>Spider traits</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\beta$ (95% CI)</td>
</tr>
<tr>
<td>Intercept</td>
<td>2.70 (2.50, 2.90)</td>
<td>0.00 (−0.36, 0.37)</td>
<td>0.24 (−0.12, 0.61)</td>
<td>−0.10 (−0.45, 0.23)</td>
<td>5.83 (5.76, 5.90)</td>
</tr>
<tr>
<td>Local urbanization, medium</td>
<td>0.07 (−0.14, 0.27)</td>
<td>0.04 (−0.29, 0.36)</td>
<td>−0.15 (−0.39, 0.09)</td>
<td>−0.25 (−0.47, −0.03)</td>
<td>−0.10 (−0.16, −0.05)</td>
</tr>
<tr>
<td>Local urbanization, high</td>
<td>0.04 (−0.17, 0.24)</td>
<td>0.46 (−0.80, −0.14)</td>
<td>−0.42 (−0.66, −0.18)</td>
<td>−0.39 (−0.62, −0.17)</td>
<td>−0.18 (−0.24, −0.13)</td>
</tr>
<tr>
<td>Landscape urbanization, medium</td>
<td>0.11 (−0.11, 0.33)</td>
<td>0.10 (−0.35, 0.52)</td>
<td>−0.13 (−0.61, 0.36)</td>
<td>0.49 (0.05, 0.94)</td>
<td>0.01 (−0.06, 0.08)</td>
</tr>
<tr>
<td>Landscape urbanization, high</td>
<td>0.10 (−0.13, 0.32)</td>
<td>0.32 (−0.12, 0.73)</td>
<td>0.00 (−0.49, 0.49)</td>
<td>0.48 (0.03, 0.93)</td>
<td>−0.03 (−0.10, 0.05)</td>
</tr>
<tr>
<td>Sampling date</td>
<td>−0.01 (−0.09, 0.08)</td>
<td>0.14 (−0.03, 0.32)</td>
<td>0.26 (0.07, 0.46)</td>
<td>0.32 (0.14, 0.50)</td>
<td>0.07 (−0.01, 0.15)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Random effects</th>
<th>$\sigma^2$ (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscape level</td>
<td>0.00 (0.00, 0.02)</td>
<td>0.06 (0.00, 0.21)</td>
<td>0.16 (0.04, 0.39)</td>
<td>0.13 (0.04, 0.32)</td>
<td>0.00 (0.00, 0.01)</td>
</tr>
<tr>
<td>Population level</td>
<td>—</td>
<td>0.23 (0.13, 0.38)</td>
<td>0.08 (0.02, 0.18)</td>
<td>0.06 (0.01, 0.14)</td>
<td>0.00 (0.00, 0.00)</td>
</tr>
<tr>
<td>Residual variation</td>
<td>0.06 (0.03, 0.09)</td>
<td>0.70 (0.62, 0.79)</td>
<td>0.74 (0.66, 0.83)</td>
<td>0.70 (0.62, 0.78)</td>
<td>0.02 (0.01, 0.02)</td>
</tr>
</tbody>
</table>

| Proportion of variation explained | — | 0.36 (0.26, 0.49) | 0.33 (0.22, 0.48) | 0.36 (0.25, 0.49) | 0.41 (0.23, 0.64) |
| of total variation, by fixed and random effects | — | 0.11 (0.04, 0.19) | 0.12 (0.04, 0.23) | 0.19 (0.08, 0.30) | 0.37 (0.19, 0.58) |
| of population-level variation, by fixed and random effects | 0.13 (0.03, 0.29) | 0.43 (0.18, 0.69) | 0.77 (0.52, 0.94) | 0.84 (0.64, 0.98) | 0.77 (0.59, 0.90) |
| of population-level variation, by fixed effects only | 0.10 (0.02, 0.22) | 0.30 (0.12, 0.48) | 0.37 (0.13, 0.59) | 0.52 (0.25, 0.72) | 0.73 (0.49, 0.87) |

**Note.** Body size, mesh width, web surface and sampling date are centred and scaled to unit standard deviation. Reference category for urbanization levels is “low urbanization”.

Family is Gaussian for body size, mesh width, web surface and Poisson for population density and egg load.

*N*<sub>landscapes</sub> = 21; *N*<sub>sites</sub> = 63; *N*<sub>observations</sub> = 621 except for population density (*N*<sub>sites</sub> = *N*<sub>observations</sub> = 62) and egg load (*N*<sub>landscapes</sub> = 9; *N*<sub>sites</sub> = 27; *N*<sub>observations</sub> = 193).
TABLE 3  Trait variance–covariance matrices for each hierarchical level under study, based on the multivariate mixed model (fixed effects for this model are virtually identical to those from the univariate models presented Table 2 and are presented in Supporting Information Table S1). In each case, among-landscape/population/individual variances are given on diagonals (greyed cells), with between-trait covariances below and corresponding between-trait correlations above the diagonal. Covariances/correlations involving egg load are on the latent (log) scale for this trait. 95% credible intervals are given in parentheses; covariances/correlations that do not include 0 in their 95% credible interval are in bold.

<table>
<thead>
<tr>
<th></th>
<th>Body size</th>
<th>Mesh width</th>
<th>Web surface</th>
<th>Egg load</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Among landscapes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body size</td>
<td>0.07 (0.00, 0.23)</td>
<td>-0.05 (-0.75, 0.64)</td>
<td>0.49 (-0.35, 0.92)</td>
<td>-0.05 (-0.90, 0.83)</td>
</tr>
<tr>
<td>Mesh width</td>
<td>-0.00 (-0.08, 0.08)</td>
<td>0.17 (0.05, 0.42)</td>
<td>0.04 (-0.56, 0.58)</td>
<td>-0.02 (-0.78, 0.78)</td>
</tr>
<tr>
<td>Web surface</td>
<td>0.05 (-0.01, 0.16)</td>
<td>0.01 (-0.08, 0.11)</td>
<td>0.13 (0.03, 0.30)</td>
<td>-0.09 (-0.87, 0.81)</td>
</tr>
<tr>
<td>Egg load</td>
<td>-0.00 (-0.01, 0.01)</td>
<td>-0.00 (-0.02, 0.02)</td>
<td>-0.00 (-0.02, 0.01)</td>
<td>0.00 (0.00, 0.01)</td>
</tr>
<tr>
<td>(b) Among populations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body size</td>
<td>0.22 (0.11, 0.37)</td>
<td>0.36 (-0.12, 0.74)</td>
<td>0.18 (-0.42, 0.63)</td>
<td>0.13 (-0.73, 0.84)</td>
</tr>
<tr>
<td>Mesh width</td>
<td>0.05 (-0.01, 0.12)</td>
<td>0.08 (0.02, 0.16)</td>
<td>0.23 (-0.49, 0.72)</td>
<td>0.07 (-0.75, 0.81)</td>
</tr>
<tr>
<td>Web surface</td>
<td>0.02 (-0.03, 0.09)</td>
<td>0.02 (-0.02, 0.07)</td>
<td>0.06 (0.00, 0.14)</td>
<td>0.04 (-0.73, 0.76)</td>
</tr>
<tr>
<td>Egg load</td>
<td>0.00 (-0.01, 0.01)</td>
<td>0.00 (-0.00, 0.01)</td>
<td>0.00 (-0.00, 0.01)</td>
<td>0.00 (0.00, 0.00)</td>
</tr>
<tr>
<td>(c) Within populations (residual)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body size</td>
<td>0.71 (0.63, 0.79)</td>
<td>0.33 (0.26, 0.41)</td>
<td>0.33 (0.26, 0.41)</td>
<td>0.14 (-0.03, 0.30)</td>
</tr>
<tr>
<td>Mesh width</td>
<td>0.24 (0.18, 0.31)</td>
<td>0.75 (0.66, 0.84)</td>
<td>0.56 (0.50, 0.61)</td>
<td>0.09 (-0.08, 0.24)</td>
</tr>
<tr>
<td>Web surface</td>
<td>0.24 (0.18, 0.30)</td>
<td>0.40 (0.34, 0.47)</td>
<td>0.71 (0.63, 0.80)</td>
<td>0.11 (-0.02, 0.24)</td>
</tr>
<tr>
<td>Egg load</td>
<td>0.02 (-0.01, 0.05)</td>
<td>0.01 (-0.01, 0.04)</td>
<td>0.02 (-0.00, 0.04)</td>
<td>0.03 (0.03, 0.04)</td>
</tr>
</tbody>
</table>

(low-to-intermediate urbanization: -9.64% [-14.51%, -4.77%]; low-to-high urbanization: -16.62% [-20.81%, -12.12%]). There was no supported effect of landscape-scale urbanization or sampling date on fecundity.

3.3 | Correlations among traits: Multivariate models

Inferences based on fixed effects from this multivariate model were virtually the same as those obtained from the univariate models (see Table 2 vs. Supporting Information Table S1 for a comparison of parameters). At the landscape and population levels, none of the estimated trait covariances was different from zero, based on credible intervals (Table 3). At the within-population level, web traits were positively correlated with each other and with body size (Table 3).

4 | DISCUSSION

Using a standardized hierarchical sampling design and multivariate modelling, we found *A. diadematus* to decrease in size with increasing levels of local urbanization, and independently, to adjust different components of its web-building behaviour. Web-building changes, in particular the reduction of mesh width at the local scale, and the increase in web investment at the landscape scale, appear to be adaptive (i.e. beneficial) and follow predictions based on lower prey biomass in cities. The putative adaptive value of these behavioural changes is supported by the fact that *A. diadematus* is able to maintain consistent population densities across broad gradients of urbanization, when other orb web spider species in the same communities cannot (Dahirel et al., 2017). An alternative explanation is that urban habitats are population sinks that are kept afloat by a supply of immigrant ballooning spiders from natural habitats (Parris, 2016). While we have no reason to anticipate such an asymmetry in dispersal, we should then expect landscape-scale urbanization to decrease local population density, as it would limit this supply. This is contrary to our observations. Interestingly, while web-building behaviours are intrinsically connected to body size, as shown by within-population correlations, their responses to urbanization are decoupled (no among-population or among-landscape correlations).

*Araneus diadematus* experienced size reduction (by about 8%) in response to local urbanization only. The temperature–size rule, found in many arthropods, predicts that individuals should be smaller at higher temperatures (Atkinson, 1994; Horne et al., 2015). As the spatial scale of urban heating matches the spatial scale at which size reduction is observed (Kaiser et al., 2016; Merckx et al., 2018), the Urban Heat Island effect provides a valid explanation for the observed patterns (Merckx et al., 2018; but see Entling, Schmidt-Entling, Bacher, Brandl, & Nentwig, 2010; Puzin, Leroy, & Pétillon, 2014). However, the impact of small temperature changes on spider body size remains to be studied, and resource availability during development is a well-documented influence and a potentially stronger driver of spider adult size (DiRienzo & Montiglio, 2016; Kralj-Fišer et al., 2014; Mayntz et al., 2003). Higher prey abundance in urbanized spots of the Sydney area was for instance associated with a larger body size in the spider *Nephila plumipes* (Lowe, Wilder, & Hochuli, 2014, 2016). In our study region, prey
size and prey biomass availability decreased with urbanization (by about 18%; Dahirel et al., 2017). The among-studies discrepancy in spider body size shifts cannot be easily reconciled with a major role of the Urban Heat Island effect, but is fully consistent with a prominent role of resource availability. Interestingly, we did not detect a spider size reduction in response to landscape-level urbanization (Table 2, Figure 3), even though prey body size declines equally in response to urbanization at both scales (Dahirel et al., 2017). This result is in accordance with our prediction that size reduction should be stronger at the spatial scale at which more urbanization-induced environmental changes cumulate, that is the local scale. Pollutants such as heavy metals also have a negative impact on body size (Ramirez et al., 2011), but we expect their influence here to be limited, as pesticide and heavy metal levels appear unrelated to urbanization in our study area (Merckx et al., 2018; T. Merckx, pers. comm.). Alternatively, resource loss may be the main mechanism driving size reduction with urbanization, which is only observed at the local scale because spiders are able to increase their investment to compensate for prey biomass loss at the landscape, but not at the local scale.

Changes in foraging behaviour in response to urbanization were scale dependent: spiders built smaller webs with smaller mesh width in response to local urbanization, but increased their web surface with urbanization at the landscape scale (Figure 3). Additionally, web surface responded to urbanization at both scales independently of mesh width variation (surface – mesh correlation = 0; Table 3), meaning

**FIGURE 3** Predicted mean *Araneus diadematus* trait values ±50% (thick bars) and 95% (thin lines) credible intervals as a function of urbanization intensity at two spatial scales. Predictions are based on fixed effects from univariate models (Table 2) with fixed effects from the multivariate model being virtually identical (Supporting Information Table S1). Predictions at one spatial scale are made by averaging over the effects of sampling date and urbanization at the other spatial scale. Grey points represent observed individual site (local-scale) and landscape average values.
that web surface changes can tentatively be interpreted in terms of corresponding silk investment changes. Webs with smaller mesh are considered better at retaining prey (Blackledge & Zevenbergen, 2006) at the cost of a smaller web surface and therefore fewer prey intercepted for a given investment in silk production. When mesh width is held constant, as it is in response to landscape-level urbanization, increased silk investment leads to an increase in web surface (Figures 1, 3) and therefore an increase in the number of prey caught (Prokop & Grygláková, 2005; Venner & Casas, 2005). Because of their larger diameter, larger webs are also built with longer radial silk threads, meaning that they can stop prey with higher kinetic energy (i.e. bigger prey) without breaking down (Harmer, Clausen, Wroe, & Madin, 2015). Although the importance of these large prey in particular for orb web evolution (Blackledge, 2011; Eberhard, 2013; Harmer et al., 2015) and individual performance (Harmer et al., 2015; Venner & Casas, 2005) remains controversial, selective advantages to having webs that maximize prey biomass in general are clear (Harmer et al., 2015). Temperature can also have a positive effect on silk production and hence web surface (Barghusen et al., 1997; Vollrath et al., 1997). However, the Urban Heat Island effect is stronger at the local, rather than landscape scale in our study region (Kaiser et al., 2016; Merckx et al., 2018), and is too weak (about 1–2°C) to explain the observed increase in web surface (in A. diadematus, a 12°C increase was needed to obtain surface changes similar to those we observed; Vollrath et al., 1997). Prey size (and thus biomass) decreased with urbanization at both scales (Dahirel et al., 2017). In this context, both the reduction of mesh size at local scales and the increase in capture area at larger spatial scales can be seen, in accordance with our predictions, as adaptive responses to urbanization, respectively, increasing prey retention and prey capture efficiency. These adaptations potentially contribute to the persistence of A. diadematus across urbanization gradients and confirm that biotic interactions can be important drivers of phenotypic changes in urban environments (Alberti et al., 2017).

Web building in orb-weaving spiders has previously been shown to be both size-constrained (Bonte et al., 2008; Gregorič et al., 2015), but also highly variable depending on the environment (Herberstein & Tso, 2011); the net effect in the case of environmental changes influencing body size was so far unknown. We show that correlations among our studied traits are only present within populations (residual covariance matrix) and not at the among-population and among-landscape levels (Table 3), implying that traits respond independently to urbanization. This must be interpreted with some caution however, as our ability to accurately detect weak among-population correlations (\(|r| < 0.3\)) may be limited (Dingemanse & Dochtermann, 2013). Within-population (phenotypic) correlations likely result from physiological and possibly physical constraints on web building, with larger spiders having more reserves to build large webs and spiders using their own body as measurement during web building (Gregorič et al., 2015; Venner et al., 2003; Vollrath, 1987). They may also result from small-scale within-site environmental variation influencing both webs and body size independently, for instance if web-building micro-habitats leading to smaller webs for structural reasons (Blamires, Thompson, & Hochuli, 2007; Vollrath et al., 1997) are also sites poorer in prey. In any case, our results suggest that while body size is correlated with web-building strategy within populations, it does not substantially limit the possibilities of spiders to adapt their web-building behaviour in response to urbanization. The observed changes in web building are thus a direct response to urban selection pressures and not an indirect consequence of body size shifts. Additionally, these results confirm that the existence of trait correlations/syndromes in one environmental context or at one biological organization level may not be informative with respect to their maintenance across contexts/levels (e.g. Fischer et al., 2016; Peiman & Robinson, 2017).

Changes in web-building behaviour in relation to urbanization may originate from both plasticity and/or evolutionary changes (Herberstein & Tso, 2011). Disentangling the relative contribution of both is, however, difficult in observational studies (Merllà & Hendry, 2014). We take advantage of our two-spatial-scale design and the fact that plasticity and genetic adaptation are generally expected to appear in response to finer-grained and coarser-grained environmental variation, respectively (Richardson et al., 2014), to emit hypotheses on the relative contributions of these two mechanisms. Mesh width varies with urbanization at the local but not at the landscape scale. This would indicate a more important role of plastic responses, in accordance with experimental work demonstrating high within-individual behavioural flexibility in response to food availability and prey spectrum (reviewed by Herberstein & Tso, 2011). By contrast, silk investment, reflected in web surface, adaptively increased in response to landscape-scale urbanization. With the caveat that some drivers of web-building variation may have been overlooked, this suggests here a putative role of genetic adaptation in urbanization-driven silk production changes. We acknowledge that our results only provide first hints in this direction and that further research will be needed to quantify the contribution of genetic selection relative to developmental and behavioural plasticity.

Costs associated with urban life were especially prominent at the local scale. Indeed, at this scale, body sizes and web capture surfaces were smaller, and lower fecundity was observed despite stable population densities (Figure 3; Table 2). Egg load did not, however, covary with body size or web traits at either the inter- or intra-population levels. Reduced fecundity is therefore unlikely to be a direct consequence of increased energetic investment in webs or a reduced body size, but rather an additive response to environmental changes associated with urbanization. Food limitation has strong negative impacts on spider lifetime fecundity even in the absence of survival costs (Kleinteich, Wilder, & Schneider, 2015) or body size changes (Miyashita, 1990). The lower fecundities observed in locally urbanized sites may therefore indicate that spiders were unable to fully compensate for reduced prey biomass at this scale despite shifts in web building and despite smaller size leading to reduced requirements. Other—here unmeasured—stressors related to urbanization may also lead to reduced fecundity and capture area in locally urbanized sites: heat waves (Kingsolver, Diamond, & Buckley, 2013), pollution (fecundity costs: Hendrickx, Maelfait, Speelmans, & Straalen, 2003; web surface costs: Benami et al., 2013; but see Ramirez et al., 2011) or repeated web destructions and rebuilding following human disturbance (Tew, Adamson, & Hesselberg, 2015). Overall, A. diadematus was comparatively much better at dealing with...
landscape-scale urbanization; indeed, both fecundity and population densities remained unaffected by urbanization at this scale. This suggests that traits that successfully responded at this scale (namely web surface) are more important to prey capture success and biomass gain than the others (mesh width) (Blackledge & Eliason, 2007). Conversely, benefits, costs and trade-offs associated with increased silk production may be detectable in other life-history dimensions than the ones we explored in the present study, such as development time and adult longevity (both expected to increase with resource restriction; Kleinteich et al., 2015; Kralj-Fišer et al., 2014), or dispersal, which is strongly counter-selected in urban fragmented environments for passively dispersing organisms (Chepurno, Carrue, Rouiffè, & Cantarel, 2008).

From an applied perspective, our results confirm the oft-stated importance of maintaining local green spaces in highly urbanized landscapes (e.g. Philpott et al., 2013), as even generalist "winning" species such as A. diadematus may benefit from them. Additionally, even though spider abundance stayed constant, webs were up to 20% smaller in locally urbanized sites. Spiders are important predators in natural and anthropogenic landscapes (Birkhofer, Entling, & Lubin, 2013; Foelix, 2010): our results highlight the necessity of accounting for changes in functional and not only numerical predator responses to accurately quantify ecosystem services provided by green infrastructures in urban environments. Further comparisons among successful species that differ in their silk production strategy (e.g. A. diadematus, which destroys and recreates webs regularly, versus Nephila plumipes, which build semi-permanent webs; Lowe et al., 2014) may highlight commonalities and help shed further light on the cost/benefit balance of adaptation to urban life.

ACKNOWLEDGMENTS

We are grateful to Jasper Dierick for his assistance during field sampling and to Hans Matheve for GIS calculations and site selection. We thank Niels Dingemans and four anonymous reviewers for their comments on previous versions of this paper. This article is part of the Belspo-funded IAP project P/04 SPEEDY (Spatial and environmental determinants of Eco-Evolutionary Dynamics: anthropogenic environments as a model). MD is funded by a postdoctoral grant from the Fyssen Foundation.

AUTHORS’ CONTRIBUTIONS

D.B. conceived the study and designed methodology; M.D.C. and P.V. collected the data; M.D. and M.D.C. analysed the data; M.D. led the writing of the manuscript. All authors contributed critically to the draft and gave the final approval for publication.

DATA ACCESSIBILITY

Data and code are available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.j886dg0 (Dahirel, De Cock, Vantieghem, & Bonte, 2018).

ORCID

Maxime Dahirel http://orcid.org/0000-0001-8077-7765
Dries Bonte http://orcid.org/0000-0002-3320-7505

REFERENCES


of an orb-weaving spider. PLoS ONE, 9(8), e105480. https://doi.org/10.1371/journal.pone.0105480


SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.